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We study the time dependence of a combined system of an electron described by a tight-binding
model interacting with vibrational degrees of freedom in a one-dimensional lattice. The time evo-
lution of our coupled model is described by a nonlinear system of differential-difference equations.
Apart from localized solutions (polarons) and extended (Bloch-like) solutions, we found that for a
small parameter range, there exists a periodic exchange of energy between the electronic and vibra-
tional degrees of freedom: a small part of the electronic energy is transferred to the lattice and then
completely back to the electron with an impressive regularity.

The interactions between electrons and lattice vibra-
tions are of fundamental importance in understanding
the behavior of solids. Basic properties, such as elec-
trical resistivity, depend crucially on this interaction.
More complicated processes of diametrically opposite
phenomenology, such as superconductivity and small po-
laron formation,! are also due to electron-phonon inter-
action. Traditionally, this difficult problem is treated
within the framework of many-body theory and the focus
is on the properties of the ground state and the low-lying
excited states. Besides the inevitable approximations,
the traditional approach is not easily adapted to time
evolution problems, such as the behavior of a highly ex-
cited single electron in an otherwise empty band. The
usual approach to this problem is based upon the as-
sumption that the electron gradually transfers its energy
to the lattice (within a few times the lattice vibration
typical period), reaches the bottom of the band, and
then the problem is reduced to a study of the ground
state. The many-body theory has difficulties also in
treating the simultaneous presence of electron-phonon in-
teraction and disorder, especially near the phase transi-
tion point of propagating to localized eigenstates.? In re-
cent years a complementary approach to the many-body
theory is emerging under the generic name of nonlin-
ear physics.3 % It is based on rigorous analytical treat-
ment and numerical simulations of simple models such
as the nonlinear Schrédinger (NLS) equation, nonhar-
monic lattice vibrations, and nonlinear magnetic Hamil-
tonians. This relatively new approach is perfectly suited
for studying time evolution problems and for incorpo-
rating disorder. One of the models treated through this
technique is the interaction of an intramolecular excita-
tion (exciton) with the lattice vibrations®® as well as
the coupling of the latter to the off-diagonal electronic
matrix element.” More recently, an extensive numerical
simulation of an electron propagating in a quasiperiodic
one-dimensional (1D) model and interacting with lattice
vibrations was performed,®® where the previously unex-
plored, highly excited states of the system were stud-
ied for the first time. Among other surprising findings,
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strong deviations from the expected thermodynamic be-
havior were observed.

In the present paper we report an even more striking
behavior of this coupled electron-lattice vibration model.
Indeed, for a small part of the parameter space; we found
that the electron initially placed in a highly excited eigen-
state, after transferring a small fraction of its energy
to the lattice;-reabsorbs the transferred energy and the
entire coupled system returns (within numerical uncer-
tainties) to its initial state. This behavior repeats itself
in an almost perfect periodic way for hundreds of pe-
riods. This impressive recurrence is reminiscent of the
Fermi-Pasta-Ulam!? results and suggests that our com-
plicated electron-lattice vibration Hamiltonian may be-
long to a torus involving a yet unknown integrable cou-
pled model. The Hamiltonian describing our model is
H=H.+H;+H,, where

He =3 ealn)in] = J 3] ) ((n 1+ (= 1)), (1)

Hy = — Z + = 2 Z(un+1 - un) P (2)

Hey = XZ [R) (n}(tnt1 — Un—1). (3)

The local orbitals |n) centered around site n (n = 1,...,N)
form a 1D lattice. In the present work we restrict our-
selves to the periodic case; i.e., the diagonal matrix el-
ements €, have the same value- (taken to be zero). The
lattice part H, describes a system of N coupled classi-
cal harmonic oscillators with mass M, displacement u,,,
momentum p, = Mu,, maximum eigenfrequency 2wp,

and sound velocity c=wpa, where wo = ‘/ g— = t;l, a
is the lattice constant, and f, is the characteristic lat-
tice time. The electron-lattice interaction H,.; is a sym-
metrized deformation potential with x being the strength
of the coupling which can be characterized by the dimen-

sionless quantity A = %5 (similar to the one appearing
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in superconductivity and with typical values that range
from 0.1 to 1.5). If the electronic wave function is writ-
ten as ¥, = c,(t)|n), the equations of motion for the
coupled electronic-lattice system become

.d
z}‘i_c.’l = X(un+l — un_l)cn — J{cnt+1 + Cn,—l), (4)

dt
d2u,,
Mgt'z,— = K (Unt1 + Un—1 — 2Uy)
+x(lent1]® = [en-1]?). (5)
Within the adiabatic approximation (i.e., for

Md?u, /dt? ~0) this system of equations becomes a dis-
crete version of the nonlinear Schrodinger equation. In
the continuum limit it reduces to the integrable nonlinear
Schrédinger equation which admits three branches of so-
lutions: Bloch-like periodic solutions, soliton solutions,
and the so-called “cnoidal wave” periodic solutions.®®
The adiabatic approximation is not adequate, in general,
for arbitrary highly excited states. Thus, in view of the
complex behavior of the discrete nonlinear Schrédinger
equation and the essential complications due to the in-
troduction of new (lattice) degrees of freedom and an as-
sociate new time scale characterizing the ionic vibrations,
our model is expected to exhibit a very rich behavior and
the use of numerical simulations becomes necessary. In
our numerical studies, the lattice is initially at rest, un-
deformed, and the electron is very close to an eigenstate
of H. with energy E.(0) = —2, —1, 0, or localized in
a few sites around the middle with approximately the
same energies as the eigenstates above. The unit of en-
ergy is J and t. = A/J is the characteristic electronic

With the choice of M and % arsrtlie natural

units of mass and time, respectively, we are left with two

time.

parameters: (a) % (measured in units J ‘/_%‘ or equiva-
lently the dimensionless quantity —ﬁ\/%LE = to/te). (b) x
(measured in units of v/JK or equivalently the dimen-
sionless quantity 7%) Typical values for our natural
units are J=1 eV, M=Am, where A is the mass num-
ber, m, the atomic mass unit, and K=50 N/m. Pe-
riodic boundary conditions are used and the time inte-
gration is performed with the fourth-order Runge-Kutta
method with a step equal to 107%%. Throughout our
simulations, energy is conserved to a relative accuracy
of at least 1075, We examine the time development
of (a) the electronic wave function, (b) the displace-
ments and velocities of the lattice atoms, (c) the par-
ticipation number P(t) = [}, |ea(£){*]7, (d) the elec-
tronic energy B, = (¥.|H.|Tc), (¢) the lattice energy
Ey = 331 YnPA + £S5 (Uny1 —un)?, and (f) the in-
teraction energy Fe; = x Y., cfcn(%nt1 — Un—1). In this
paper, we will concentrate on the case where the electron
has a small effective mass comparing to the lattice mass,
ie., A=1t1./ty = 0.01224 « 1, which is typical for most
metals. This is the usual adiabatic limit. However, in
very narrow-band materials the ratio t. /¢, may approach
(or even exceed) unity. An extensive presentation of our
results relevant to the latter case will be given elsewhere.
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It should be emphasized that we restrict ourselves to the
low-temperature case.

For low initial energy, e.g., Fe(0) = —2 (which implies
that the electron starts at the ground state of H) we
recover the expected many-body behavior for a 1D sys-
tem: A polaron is formed, the spatial extent of which is
proportional to x~2 (for weak coupling, x <0.5). The
shape of the localized electronic wave function is approx-
imately the soliton-type obtained analytically within the
adiabatic and the continuum approximation

en = ( 2’1_‘{2 J) Y et [%(n - no)] : (6)

—~As the initial energy of the electron gets counsiderably
higher, we do not obtain localized polarons, unless we
reach extremely high and unrealistic values of the cou-
pling constant. In fact, in all cases of small mass and
highly excited electrons we found, in agreement with
Refs. 8, 9, that the transfer of energy from the electron to
the lattice degrees of freedom slows down and eventually
it seems to stop (on the average) without the electron be-
ing thermally equalized with the lattice. This seemingly
antithermodynamic behavior is associated in most cases
with a very complicated time evolution involving strong
short term fluctuations and long term variations. Even
for relatively long times (~ 10%t;) this almost chaotic
behavior continues. However, for a small part of the pa-
rameter space, we found a striking behavior which is not
only antithermodynamic but very regular as well.

In Fig. 1, we show this remarkable behavior. The data
were obtained for the case where the electron is placed
initially very close to an eigenstate with E.=—1, the cou-
pling constant is x =1.5, and N=300. (Similar results
were obtained for NV in the vicinity of 300.) An impres-
sive recurrence phenomenon is exhibited. The electron
transfers a small fraction of its energy to the lattice; this
transferred energy spreads over the vibrational degrees
of freedom and then regroups and returns to the elec-
tron for each recurrence period, thus driving the system
repeatedly back to its initial electronic state with the lat-
tice undistorted and at rest. In Fig. 1(a) we show this
time variation of the total lattice energy; it exhibits peri-
odically placed spikes and between the spikes the lattice
energy becomes zero. We have followed this time evolu-
tion for more than 100 periods without any visible dete-
rioration of this regular pattern. The interaction energy
follows an almost identical pattern with the maximum
value being 0.0026 (instead of 0.0041 for the lattice en-
ergy). In Fig. 1(b), the time evolution of the electron
energy is shown; at the position of each spike the elec-
tron transfers 0.0067 units of energy to the lattice and
to the interaction energy but it recovers all this energy
between spikes. Even the participation number which is
a very sensitive function of any fluctuation in the wave
function returns to its initial value [P(0)=300] with im-
pressive regularity and accuracy [Fig. 1(c)]. The numer-
ical solution clearly indicates that this periodic trans-
fer of energy back and forth from the electronic modes
to the lattice modes corresponds to periodic modulation
and demodulation of the wave function. In other words,
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the electronic wave function is not a simple Bloch state
anymore, but in addition to the “carrier” wave number
corresponding to this eigenstate, a wave envelope devel-
ops. When it reaches maximum modulation | E. — E.(0)],
|Ee-¢| and |Ey| reach their maximum values and when it
demodulates, the energies return to their initial values.
The recurrence time (period) T’ for this specific example
shown in Fig. 1 is T,.=60t,. This remarkable behavior is
robust for small changes in the parameters and in the ini-
tial conditions. It survives in the region 1.35< x <1.58,
although the period depends strongly on x ranging from
~350t, to 45¢, as x increases within the above range.
Beyond the upper limit (x ~2) an intermediate type®?°
of behavior is approached with an apparent chaotic time
evolution. This recurrence has been observed for some
other values of N and % (even though not as persis-
tent as for IV ~300 and rarely for i outside the range
of 0.007< % <0.019) but only for initial states close to
the electronic eigenstate with £, ~ —1. It also seems to
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FIG. 1. The lattice energy E: (a), the electron energy E.
(b), and the participation number (c) versus time for a system
with initial energy E.(0)=—1, the electron-phonon coupling
x=1.5, N=300, and %£=0.01224. The unit of time is ¢;, length
is the lattice spacing, and energy is J.
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be persistent and stable (we run simulations for ~ 10%t,
and small random perturbations did not-destroy it). In
Figs. 2 and 3, we show how the recurrence period (T7.)
and the maximum lattice energy (Fy,max) depend on the- -
coupling (x) and the electron mass (%), respectively, for
the region of the parameter space in which recurrence
appeared. The strong dependence of T, on the coupling
constant shows that the phenomenon is due to the non-
linearity of our model and excludes linear-resonance type
of explanations. As we approach the lower quasicritical
value of  (x ~1.35), the recurrence period becomes ex-
tremely long and the maximum value of F; and E.-s ex-
tremely low; thus, the recurrence tends to disappear and
the system seems to remain in its initial state. For val-
ues of x close to the upper quasicritical value (x =1.57)
the pattern after a few regular periods shows a varia-
tion in the value of the period followed by fluctuations
in the maximum values (of E¢ and E,.;) and eventually
an apparently chaotic behavior is reached with consider-
ably larger values of Ey and E.;. The dependence of the
phenomenon on # (i.e., on the electron mass) shows two
distinct regimes (Fig. 3): For A > 0.0115 the behaviors
of T, and Eymax are as in Fig. 2; i.e., T decreases as
i increases, while Ey max increases with i. Also, the re-
currence disappears for A ~0.019 in a very similar way as
for x ~1.57 described previously. However, for A <0.0115
the dependences of T, and Fy max are diametrically op-
posite: T} increases and Ejy yax decreases with increasing
k. Moreover, in this region, as opposed to the region
A >0.0115, the interaction energy F.-, i3 negative and
about equal in size to the lattice energy, so the electron
energy changes very little even at the spikes. We have
no explanation for this peculiar behavior. These results
are remarkable not-only because thermalization does not
occur in the sense of eventual irreversible equipartition
of energy among all different degrees of freedom, but be-
cause of the striking periodic regularity of returning to
the initial state in spite of the relative complexity of our
Hamiltonian. This behavior strongly suggests that our
model is close to (i.e., belongs to the same torus as) an
integrable system. Further support of this idea is pro-
vided by the fact that we were able to approximate our
numerical results with solutions that consist of products
of elliptic and trigonometric functions. The elliptic func-
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FIG. 2. The recurrence period T (solid circles) and the
maximum lattice energy amplitude Ey nax (%'s) as a function
of the electron-phonon coupling x for a system with N=300
and /=0.01224.
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FIG. 3. The recurrence period 7; (solid circles) and the
maximum lattice energy amplitude Egmax (X’s) as a function
of the electron mass (%) for a system with N =300 and x=1.5.

tions (with time-dependent arguments only) are the en-
velope functions. The form of approximate solutions for
the electronic wave function and the lattice displacements
reproduces the various energies and participation number
profiles. More specifically we have

Rec, = \/Lﬁcos (;—rn — wt)
+Cren(At|k) cos (

2T

Nn+—gn+w't+wt), (7a)

U, = Cacn(At|k) cos (z—ﬁﬂn + 2?”774 + w't + 90) ,  (Tb)

where fiw = E.(0) = —1, 7/3 is the initial Bloch wave
vector [corresponding to F.(0) = —1], C; and C, the
modulation amplitudes, are related to Ey max, A is related
to the recurrence period, T, k (the modulus) is almost
unity, w’ = 2x /7", T' ~2.64%;, and @ is a phase, which
depends on the parameters. The intermediate frequency
w' seems to be independent of the parameters x and £.
The above expressions, although they fit rather well the
numerical data, are not exact solutions of the equations
of motion (4) and (5) for any value of the parameters and
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the initial conditions. However, these expressions have
a similar form (except that the argument of the elliptic
function depends on time only and not on § = ut — « as
in the integrable case) as a class of exact solutions of the
integrable model of the continuous NLS equation® and
some integrable version of the discrete NLS equation.!?
The appearance of these solutions is related to the insta-
bility of the initial Bloch eigenstate. A similar recurrence
resulting from a Benjamin-Feir instability has been ob-
served both numerically and experimentally for the NLS
equation.1?2714 However, the fact that recurrence emerges
in our model, which in addition to the electronic degree
of freedom fully includes the vibrational degrees of free-
dom, indicates that this phenomenon might have a more
general physical significance. It also appears that the
initial state giving rise to the recurrence of our model
does not necessarily satisfy the conditions obtained from
linear and mnonlinear stability analysis for the NLS.%15
Tt is possible that for this small region (or perhaps for
other small regions as well) of the parameter space our
system exhibits local integrability or it is very close to
being integrable.

In conclusion, we found that a highly excited electron
exhibits a very remarkable time evolution for a region
of the parameter space of our relatively complex model.
Not only equipartition of energy is not reached, but in
this region of parameter and initial condition space a
striking periodic recurrence behavior is exhibited, driven
by the instability of the initial Bloch state but returning
to it with a remarkable regularity. This recurrence can
be described approximately by “cnoidal” wave solutions,
suggesting a torus of almost integrability interpretation
of our results.
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